像FIFA一樣踢球的AI,比打游戲更強嗎?

原標題:像FIFA一樣踢球的AI,比打游戲更強嗎?

還記得被阿爾法狗支配的恐懼嗎?最新的“AI恐怖故事”,是谷歌教AI踢足球,打造“AI版貝克漢姆”。

其實,這個足球人工智慧研究專案Google Research Football,早在今年6月就出現(xiàn)在了谷歌報告上,而更早一些時間,就在Github上以開源的形式發(fā)布了足球環(huán)境游戲的測試版代碼。

以谷歌“AI界頂流”的咖位,加上當今的資訊效率,現(xiàn)在才突然一波走紅,反射弧委實有點過長了。難道是媒體們集體不蹭熱點,改成冷飯熱炒了?

答案或許處在“下一代AI”這個充滿遐想的泛濫標題里,用一個上古時期的互聯(lián)網(wǎng)話術(shù)來說,就是聽起來很性感。

此前在《星際爭霸》《DOTA2》里超越人類電競隊伍的AI,都沒能獲此殊榮,踢個足球就引領(lǐng)未來,AI和AI的差別咋就這么大呢?

這一代AI的上升空間還有多大?

大眾已經(jīng)越來越明白,AI不能變魔術(shù)了。然而將時間倒回到2016年,相信絕大部分人都不會否認,擔心工作被AI替代,被機器人網(wǎng)紅索菲亞嚇得瑟瑟發(fā)抖,覺得《終結(jié)者》《黑客帝國》《西部世界》早晚要來,都是切身體會過的心路歷程。

傳統(tǒng)的“AI恐怖故事”宣告破產(chǎn),一方面得益于各路技術(shù)大牛日積月累地科(懟)普(人),同時也跟建立在深度學習基礎(chǔ)上的技術(shù)上限有關(guān)。

比如建立在龐大的數(shù)據(jù)運算基礎(chǔ)上,訓練AI玩電子游戲往往就需要花費數(shù)十萬美元;比如黑箱性,沒有一個深度學習結(jié)構(gòu)(卷積、RNN、LSTM、GAN 等)可以解釋自己的決策,暗搓搓地搞歧視、罵人、發(fā)明新語種之類的事情層出不窮;再比如只會做“填空題”,面對需要引用常識、共識、推理等問題的時候就會表現(xiàn)的像個智障,容易被糊弄,比如將打印的人臉識別成真的,要么就是智商不及預期,醫(yī)療診斷、機器人、自動駕駛等始終進展緩慢……一貫反骨的馬斯克,前不久就推出了基于計算機視覺感知的無人駕駛新方案。

總體來說,深度學習真正能成功做到的,還是在給定大量人為標注數(shù)據(jù)的情況下,實現(xiàn)兩個空間事物之間的映射。距離人們預想中的AGI強人工智能真是“事倍功半”,極其遙遠。

所以,著名的“唱衰AI”專家 Filip Piekniewski聲稱將“AI寒冬”的鍋甩給了深度學習,雖然有些聳人聽聞,也未嘗不是指出了一個切實而嚴峻的問題——如果以深度學習為基礎(chǔ)的AI應(yīng)用不再繼續(xù)提升,那么相關(guān)產(chǎn)業(yè)走到“窮途末路”(尤其是那些to VC項目),也是早晚的事~

DL不是終極算法,不妨繼續(xù)沉迷游戲

既然都這樣了,那還怎么做AI?理論上有兩個角度:一是深度學習的自我進化,在原有的基礎(chǔ)上引入新技術(shù)彌補一些先天不足;另一個則是尋找“備胎”,扶持AI領(lǐng)域的其他流派上位。

目前看來,科技企業(yè)也確實都極其渴盼變量出現(xiàn),不過他們更青睞于做溫和的“改良派”,畢竟“徹底推翻腐朽政權(quán)”還需要一個漫長的培養(yǎng)接班人的過程。

以谷歌Football Engine為例,就讓智能體借助獎勵機制來自己get動態(tài)策略,從而學會規(guī)則與踢球技能(強化學習)。

不過,要稱之為“下一代AI”未免有點拔苗助長。

首先,“可玩性足球”(Gameplay Football)并沒有完全擺脫深度學習的窠臼。系統(tǒng)根據(jù)對手的實力不同,提出了簡單、終極、困難這三個版本的基準問題,其中簡單級別的比賽應(yīng)用單一機器算法,而困難級別則是由分布式深度學習算法來處理的。

而且,系統(tǒng)所采用的訓練方式(即強化學習),與OpenAI Five在游戲Dota 2中擊敗了世界級電子競技隊OG,deepmind在《魔獸爭霸》人機對戰(zhàn)中獲勝時所采用的訓練方式,并沒有本質(zhì)上的區(qū)別,都是讓智能體在復雜的即時戰(zhàn)略游戲中學會與環(huán)境交互,并解決復雜的任務(wù)。

同時,作為機器學習的一個分支,強化學習之于AGI依然遙遠。深度學習三巨頭的Yann LeCun 和Hinton都認為,當前用來實現(xiàn)“人工智能效果”的技術(shù),對實現(xiàn)(真正的)人工智能是行不通的。就像怎么優(yōu)化馬車的核心技術(shù),也無法造出汽車一樣。

更何況,類似的彌補深度學習不足的機器學習方法還有很多。

比如小樣本學習、無監(jiān)督學習就擺脫了對大規(guī)模數(shù)據(jù)集和人類專家監(jiān)督的需求,提升自主訓練效率;元學習解決了深度學習訓練出的智能體技能單一、缺乏常識的問題。深度學習大神Hinton在2015年還提出了一個黑科技——知識蒸餾(Knowledge Distillation),通過遷移知識,借助訓練好的大模型得到更加適合推理的小模型,從而提升深度學習在大規(guī)模計算集群上的訓練表現(xiàn)。

總而言之,所謂的“下一代AI”,核心還是彌補深度學習在理解能力、多模態(tài)仿生、應(yīng)用性價比等方面的不足。作為過渡型方案,這種“深度學習+”估計還會持續(xù)很長時間。不過距離真正實現(xiàn)AGI的預期,依然相去甚遠。

追尋下一代AI,或許要走向更寬廣的技術(shù)海域

今日我們看到的大多數(shù)AI產(chǎn)品思路,都是以DL(Deep Learning) + GOFAI (Good Old Fashioned AI) 的模式建立起來的。也就是將深度學習與其他算法相結(jié)合,讓“AI”走向千行萬業(yè)。

不過也有不少科學家是徹底的“革命派”,想了不少幫助AI的新辦法,其中或許也隱藏著破局的可行性。

比如Hinton就試圖通過膠囊網(wǎng)絡(luò)Capsule Networks來顛覆傳統(tǒng)的深度學習算法,用神經(jīng)元向量代替?zhèn)鹘y(tǒng)神經(jīng)網(wǎng)絡(luò)的單個神經(jīng)元節(jié)點,讓不同的神經(jīng)元攜帶不同屬性的信息傳導到下一層運算,已經(jīng)證明可以像人類的視覺系統(tǒng)一樣,自動將學到的知識推廣到不同的新場景中,這被認為是未來讓AI被賦予常識推理的關(guān)鍵技術(shù)。

還有的專家堅持基于邏輯規(guī)則的符號系統(tǒng)能夠?qū)崿F(xiàn)AI推理,一些學者和創(chuàng)業(yè)公司就正在用Prolog(一種基于符號學的編程語言)開發(fā)新工具。理論上可以通過非常少的數(shù)據(jù)來進行訓練,自己處理事實和概念,然后自動生成事實推論。

但總體而言,其他分支的AI流派想要撼動“深度學習2.0”的主流地位,仍然比較困難。除了產(chǎn)業(yè)端正在大舉投入對深度學習及衍生技術(shù)的應(yīng)用之外,美國國防高級研究計劃局DARPA甚至籌備了一個名為“機器常識(Machine Common Sense)”的計劃,旨在推進和分享模擬人類常識性推理的技術(shù)創(chuàng)意,總投資預計約為6000萬美元。

作為標桿的深度學習及延伸技術(shù),其商業(yè)化潛力,即使“靠山吃山”,也有數(shù)年的好光景可以期待。但必須承認,面對其自身的瓶頸,大眾的腎上腺素與技術(shù)期待也開始回歸正常值,甚至有點審美疲勞。技術(shù)專家們再不搞個大事件,熱愛“AI鬼故事”的科技編輯們都要被逼禿頭了……

值得探索的下一代產(chǎn)業(yè)AI方向會在哪里,恐怕與我們的現(xiàn)有認知都相去甚遠。畢竟世界上每一次巨大的變革,總是開始于某一些被忽視的技術(shù)角落。除了繼續(xù)挑戰(zhàn)技術(shù)的穹頂,谷歌們似乎別無選擇。

免責聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準確性及可靠性,但不保證有關(guān)資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責任。任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。

2019-08-24
像FIFA一樣踢球的AI,比打游戲更強嗎?
深度學習大神Hinton在2015年還提出了一個黑科技——知識蒸餾(Knowledge Distillation),通過遷移知識,借助訓練好的大模型得到更加適合推理的小模型,從而提升深度學習在大規(guī)模計

長按掃碼 閱讀全文